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Abstract

A workhorse research design identifies the effects of corporate governance by changes in state

laws, clustering standard errors by state of incorporation. Asymptotic inference using these

standard errors, however, dramatically understates false positives: in a typical specification,

randomly generated placebo laws have 1/5/10%-level significant estimated treatment effects

9/21/30% of the time. This poor finite sample performance is due to unequal cluster sizes,

especially Delaware’s concentration of half of all incorporations. Bootstrap or permutation tests

mostly fix the problem, common robustness checks less so. The placebo law approach can also

be used to calculate power, which will be acceptably high only for substantial effect sizes.
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1 Introduction

In the United States, many important corporate governance features are laid down in state laws. A large

empirical literature in corporate finance studies the effects of these laws on corporate actions and performance

with firm-level data, usually focusing on legislative changes in a difference-in-difference framework. Interest

is in the laws for their own sake or, more commonly, as exogenous variation in general economic determinants

such as managerial slack. In 2018, Karpoff and Wittry counted 78 published articles and working papers

using changes in anti-takeover laws alone; this list has kept growing rapidly.1 The standard design is a linear

firm-level panel regression with firm fixed effects and a variety of possibly confounding time-varying factors.

Following Bertrand, Duflo, and Mullainathan 2004, it has become standard econometric practice in these

papers to cluster the standard errors by state of incorporation before performing asymptotic inference using

the normal distribution or the t-distribution with degrees of freedom equal to the number of clusters minus

1.2

This paper shows, however, that the conventional approach to inference dramatically overrejects in this

setting. False positives are far more likely than conventional p-values and significance levels suggest. In a

typical difference-in-difference design with real data, tests of randomly generated “placebo laws” reject the

true null hypothesis of no effect at the 1/5/10% level at least 3/9/16% of the time, depending on the number

of “treated” states and using the popular Tobin’s q as dependent variable. The mean (median) false positive

rate across numbers of “treated” states and whether Delaware is “treated” is 9/21/30% (8/19/28%) for tests

that are supposed to hold that rate to 1/5/10%. Other popular dependent variables like leverage or ROA

yield similarly excessive false positive rates. Theory and simulations show that the source of the problem

is cluster size imbalance, which is extreme in this setting: Delaware contains half of all U.S. firms. Most

fixes recommended in the literature cannot be used with state corporate law difference-in-difference designs

(due to staggered adoption), or fail to correct the overrejection. Acceptable results obtain with the cluster

wild bootstrap (Cameron, Gelbach, and Miller 2008) or, better, with a permutation test on the treatment

indicators (similar to DiCiccio and Romano 2017; MacKinnon and Webb 2020). Nevertheless, obtaining 80%

power requires effect sizes on the order of 0.1 standard deviations of the raw dependent variable.

This paper is structured as follows. Section 2 reviews conventional, asymptotic cluster-robust inference in

the context of the popular firm-level linear regression design with state corporate law as the key independent

variable, focusing on the design’s difference-in-difference panel variant. Section 3 uses “placebo laws” to

demonstrate empirically that the conventional approach grossly understates false positive rates. The results

were summarized above. Section 4 explains this failure with a review of the asymptotic theory and more

Monte Carlo evidence. Essentially, cluster size imbalance drastically slows the rate of convergence of the

conventional cluster-robust variance estimator. Section 5 considers possible fixes, showing that only the

cluster wild bootstrap and a permutation test work in this context. Section 6 simulates power for these

tests. Section 7 concludes.

1See, e.g., Bharath and Hertzel 2019; He and Hirshleifer 2019; Demiroglu, Iskenderoglu, and Ozbas 2019; Gutiérrez

Urtiaga and Vazquez 2019; Cremers, Guernsey, and Sepe 2019. Another example of a statute popular with finance

researchers is universal demand laws.
2On the necessity to cluster by state of incorporation, see section 2.2 below.
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1.1 Related Literature

The present paper is similar in spirit to Bertrand, Duflo, and Mullainathan 2004, Petersen 2009, and others

who use Monte Carlo simulations to demonstrate the practical importance of properly accounting for serial

and cross-sectional correlation in the error term. When the number of clusters is above 42 or 50, as in

regressions using U.S. state laws, the standard advice (e.g., Bertrand, Duflo, and Mullainathan 2004; Petersen

2009; Angrist and Pischke 2008) is to use the clustered “sandwich” variance estimator (White 1984; Liang

and Zeger 1986). MacKinnon and Webb 2017 show that this approach fails when cluster sizes are unequal,

the more so the further away the fraction of treated clusters is from 1
2 , and instead point to the cluster

wild bootstrap proposed by Cameron, Gelbach, and Miller 2008 as the solution. With one exception,

however, none of the prior literature consider cluster size imbalance as extreme as that in the corporate

governance context: More than half of all publicly traded U.S. corporations are incorporated in Delaware,

whereas, e.g., MacKinnon and Webb 2020 considered even 19% to be “quite extreme” for the largest cluster.

When one cluster contains half the observations, both the sandwich estimator and the cluster wild bootstrap

spectacularly fail to control size, as shown by Monte Carlo evidence with a continuous regressor in Djogbenou,

MacKinnon, and Nielsen 2019 and for the cluster treatment assignment model in this paper (even if the

fraction of treated states is exactly 1
2 ). Theory explaining this failure, reviewed in section 4, is provided

in Carter, Schnepel, and Steigerwald 2017, MacKinnon and Webb 2017, and Djogbenou, MacKinnon, and

Nielsen 2019. The latter papers are part of an active theoretical econometric literature on inference with

clustered data (see surveys of Cameron and Miller 2015; MacKinnon and Webb 2019; revised May 2020),

briefly reviewed in section 5. More specifically, this paper’s proposal of a permutation test is related to a

recent surge in interest in permutation tests for regression coefficients (DiCiccio and Romano 2017), including

in clustered regression (Canay, Romano, and Shaikh 2017; Hagemann 2019a; Hagemann 2019b; MacKinnon

and Webb 2020).

Fixing inference in tests with state corporate laws is also the concern of Heath et al. 2020’s investigation

of the multiplicity problem with “reusing natural experiments.” They use simulations and actual data to

show that critical values have to be adjusted upwards sharply in the study of one law’s effect on multiple

outcomes if it is desired to control the familywise error rate (FWER). The FWER is the probability of falsely

rejecting at least one of the individual null hypotheses with respect to individual outcomes, or equivalently,

the probability of falsely rejecting the composite null hypothesis that the law has no effect on any outcome.

Heath et al. 2020 control the FWER asymptotically using the stepdown method of Romano and Wolf 2005.

By contrast, the present paper is concerned with tests of simple hypotheses in finite samples.

Other papers consider not inference but specification issues and bias. Karpoff and Wittry 2018 point out

that various anti-takeover statutes share similar purposes and are often adopted in close temporal proximity,

i.e., they are not independent and thus must be controlled to avoid omitted variable bias (also see Coates

2000; Catan and Kahan 2016; Cain, McKeon, and Solomon 2017). In our “placebo law” tests, we control

for all the laws identified by Karpoff and Wittry 2018.

A wave of recent papers in the general econometrics literature (Chaisemartin and D’Haultfœuille 2020;

Goodman-Bacon 2020; Imai and Kim 2020; Sun and Abraham 2020; Borusyak and Jaravel 2018) points out

specification problems with linear twoway fixed effects models (i.e., models with unit and time fixed effects),

which are the workhorse of the corporate finance literature. The recent papers emphasize that the workhorse

model with a simple treatment indicator is misspecified if treatment effects are dynamic, i.e., accumulate or
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otherwise change over time rather than occur instantaneously, and that even more general treatment dummies

cannot be interpreted as average treatment effects when treatment effects are heterogeneous. While our

Monte Carlo evidence uses the workhorse model, we sidestep these specification issues: our treatment effects

are always instantaneous and homogenous (of size 0 in case of the “placebo laws”). In this sense, our Monte

Carlo evidence illustrates the theoretical point that the inference problem is separate from the specification

problem. Nevertheless, fixing the inference problem should have a salutory effect for the specification problem

because correct inference makes it less likely that nonsensical estimates produced by misspecified models will

be mistaken for true effects.

2 The Typical Study Design

This section reviews the typical study design. Our focus in this paper is on inference (2.2). In principle, the

inference problems generated by the extreme imbalance in incorporation cluster sizes are not specific to any

particular estimated equation or estimator. Nevertheless, to fix ideas and to be specific about the context

for our Monte Carlo evidence, we begin by explicitly setting out the typical twoway fixed effect equation and

estimator (2.1). Readers familiar with the typical twoway fixed effect model and the conventional “sandwich”

cluster-robust variance estimator of White 1984; Liang and Zeger 1986 may skip ahead to section 3.

2.1 Estimated Equation and Estimator

A typical study estimates a linear panel model of the following type:3

yij...st = αi + βDst + δ′xit + γ′zj...st + εij...st (1)

where β is the coefficient of interest, and

• the subscripts are i ∈ {1, . . . , I} for firms, j ∈ {1, . . . , J} for industries, s ∈ {1, . . . , S} for incorporation

states, t ∈ {1, . . . , T} for time (years), and “. . . ” in a subscript stand for further possible groupings

(e.g., location of firm headquarters);

• Dst is a dummy variable for the “treatment,” i.e., whether state s, where firm i is incorporated, has

the provision in question in year t (usually, the dummy switches on in some year t∗ and stays on for

the remainder of the sample period t ≥ t∗ in that state);

• yij...st is the outcome variable for firm i in year t;

• αi is a firm-specific intercept, i.e., a fixed effect for firm i;

• xit is a vector of time-varying firm-level controls;

• zj...st is a vector of time-varying industry etc. level controls; and

• εij...st is a firm-year specific error term (which is allowed to be correlated within firm and within

incorporation state, as discussed below).

3Cross-sectional models, where T = 1 and hence t = 1 constant for all observations, are far less popular because

they must have αi = α∀i and hence do not allow controlling for unobserved time-invariant firm-level heterogeneity.

In any event, we have verified that similar overrejection occurs in simple cross-sectional data.
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Following Gormley and Matsa 2013, most studies include (industry-)time fixed effects in zj...st, such

that the model is a twoway fixed effect model.4 The model is usually estimated with the fixed effect (FE)

estimator. That is, one estimates by OLS the firm-demeaned equation:

ÿij...st = βD̈st + δ′ẍit + γ′z̈j...st + ε̈ij...st (2)

where double dots denote time-specific deviations from the firm-specific mean for firm i.

There are several important specification issues, many mentioned in 1.1, that we can sidestep in our

analysis of inference. In particular, our Monte Carlo evidence using placebo laws or entirely simulated

data avoids omitted variable bias and problems from heterogeneous and/or dynamic treatment effects by

construction.

2.2 Inference

As already mentioned, it is now standard practice to cluster the standard errors by state after estimating

(2), i.e., to account for the likely non-zero covariance between residuals for the same firm over time and for

multiple firms within the same state of incorporation. Clustering at the state level is indicated because the

treatment assignment is clustered at the state level (Abadie et al. 2017): treatment is perfectly correlated

within state-years, and very highly serially correlated within state due to legislative inertia.5

The usual way to cluster is the “sandwich” estimator of the coefficient variance matrix introduced by

White 1984; Liang and Zeger 1986 (CRVE):

V̂ ≡ (W′W)−1
S∑
s=1

(W′
sε̂sε̂

′
sWs) (W′W)−1 (3)

where ε̂s is a column vector of regression residuals for the observations in state s, Ws is a matrix of covariates

for the observations in state s with typical row
(
D̈st, ẍ

′
it, z̈

′
j...st

)
, and W ≡

(
W1

′ . . .WS
′)′. Let V̂ (β̂) denote

the estimated variance of β̂, which is of course the appropriate diagonal element of V̂. For hypothesis tests,

focus in the literature and in this paper is on the resulting t-statistic

t̂ ≡ β̂√
V̂ (β̂)

. (4)

Carter, Schnepel, and Steigerwald 2017, B. E. Hansen and S. Lee 2019, and Djogbenou, MacKinnon,

and Nielsen 2019 generalize to the case of cluster heterogeneity earlier results that V̂ consistently estimates

the true variance and that t̂ is asymptotically normal as S →∞. Nevertheless, it is standard to use critical

4The computational challenge of estimating the many fixed effects was solved by the Stata package reghdfe of

Correia 2016.
5Ignoring the clustered treatment assignment would be harmless if errors were uncorrelated within clusters. Errors

are virtually guaranteed to be correlated within clusters, however, since a myriad of state court decisions and statutory

amendments affect all or many firms within the state simultaneously. Indeed, some papers use individual decisions

or amendments for identification (e.g., Cohen and Wang 2013; Cain, McKeon, and Solomon 2017). But one cannot

hope to identify and to control for all possibly relevant state-level shocks. Empirically, unreported placebo law tests

with firm-level clustering show even worse overrejection than that reported with state-level clustering in Section 3,

controls for the five second-generation anti-takeover statutes from Karpoff and Wittry 2018 notwithstanding.
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values from a t-distribution and to apply an adjustment factor to V̂ to correct for finite sample bias (see

Donald and Lang 2007 for intuition and an exact result under more restrictive assumptions). In particular,

Stata multiplies V̂ by N−1
N−k ×

S
S−1 , where k is the number of regressors excluding nested fixed effects, and

uses critical values from the t-distribution with S − 1 degrees of freedom. This paper does so too.

3 Placebo Laws

In this section, we use placebo laws to demonstrate failure of the conventional cluster robust inference in

finite samples with state corporate laws, asymptotic consistency notwithstanding. The next section will

explain why this happens (cluster size imbalance).

We study the “effect” of random dummy variables (“placebo laws”) in a typical data set. Even though

the Placebo laws are random and hence have no real effect by construction, the conventional tests reject the

null of no effect at rates far higher than their nominal level. That is, the false positive rate is far higher than

the chosen test size or p-value would make one believe.

The base data are all firm-year observations of US-listed firms from the CRSP/Compustat merged

database for the years 1983-2018 excluding financials and utilities and ADRs. The years are chosen to avoid

interference from first-generation anti-takeover laws (Karpoff and Wittry 2018, section II.A). As dependent

variable yijst, we consider Tobin’s q (e.g., Gompers, Ishii, and Metrick 2003) and the seven dependent

variables in Karpoff and Wittry 2018: ROA, Capex, PPE growth, asset growth, cash, SGA expenses, and

leverage.6 All dependent variables are 95%-winsorized. Following Giroud and Mueller 2010; Karpoff and

Wittry 2018, the firm-level control variables xit include (only) firm age, age squared, size, and size squared.

The group control variables zjst always include industry-year jt fixed effects (using the Fama-French 49

industry coarsening of the SIC classification).7 To emphasize that the inference problem is separate from

the specification issues considered by other papers, we show results with and without additional dummy

controls for each the five second-generation anti-takeover statutes from Karpoff and Wittry 2018.8 Standard

errors are clustered by 51 states s of incorporation (the 50 U.S. states and the District of Columbia) using

historic incorporation data from (Spamann and Wilkinson 2019) (backfilled for years prior to 1995). As the

citations indicate, this basic setup corresponds to widespread practice in the literature, but in any event,

nothing hinges on the specifics, as we will obtain very similar results with purely simulated data in 4.

Starting from the base data just described, we then generate random placebo laws (i.e., a dummy variable

equalling one for “treated” state-years) in random states in random years. Once enacted, placebo laws stay

“in effect” throughout the sample period, as is usually the case in the real world. The simulations are run

separately 2,000 times for each combination of (a) dependent variable, (b) every number of treated states

between 1 and 51, (c) whether or not Delaware (DE) is among the treated states (if it is not generally among

the treated, it nevertheless will be once the number of treated states is 51), and (d) whether anti-takeover

6Tobin’s q is constructed as (total assets + market equity - book equity) divided by total assets, and market and

book equity are as defined on Ken French’s website https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

Data_Library/variable_definitions.html.
7The 49 industry definitions are from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/

Siccodes49.zip.
8Karpoff and Wittry 2018’s five second-generation anti-takeover statutes are control share acquisition laws, busi-

ness combination laws, fair price laws, directors’ duties laws, and poison pill laws.
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statute dummies from Karpoff and Wittry 2018 (KW) are included as controls. For each run, the requisite

number of “treated” states are picked at random (subject to ensuring that Delaware is or is not treated, as

the case may be), and then a first treatment year is drawn independently for each of the treated states from

a uniform discrete distribution over all sample years. (Unreported results forcing the first treatment year

to be year 2 or beyond look virtually identical.) Equation (2.1) is then estimated using OLS, the t-statistic

calculated as in (4) using (3), and then compared to critical values from a t-distribution with 50 degrees of

freedom. Rejection rates are then calculated for each combination of treated number, Delaware status, and

controls.

[Insert Figure 1 Here.]

Figure 1 graphs the results for Tobin’s q. To facilitate comparison of the tests’ nominal size (i.e., their

ostensible false positive rate) to their empirical size (i.e., their actual false positive rate), the vertical axis

has been rescaled by taking square roots of the rejection rates, and horizontal lines drawn at 1%, 5%, and

10%. Evidently, the conventional test using (4) grossly overrejects.

A natural question to ask if there is something special about Tobin’s q. There is not. With variation in

the details, unreported graphs for the other seven dependent variables mentioned above look similarly bad.

The full results are summarized in the Table 1.

[Insert Table 1 Here.]

Overrejection tends to be a little less bad when many clusters are treated, when Delaware is among the

treated clusters, and when KW controls are included. The main takewaway, however, is that conventional

cluster-robust inference fails spectacularly in this setting. Tests with nominal size (i.e., false positive rates) of

10/5/1% have empirical size (i.e., actual false positive rates) on the order of 20/15/5%. In the next section,

we provide intuition for why this happens.

4 Why Conventional Inference Fails

The reason why conventional inference fails in this context is that its justification is asymptotic, whereas the

convergence of the “sandwich” cluster-robust variance is very slow when clusters are of unequal size (Carter,

Schnepel, and Steigerwald 2017; MacKinnon and Webb 2017).

[Insert Figure 2 Here.]

Incorporation clusters are of very unequal size, as shown in figure 2. Delaware contains 62% of firm-years

in CRSP/Compustat data 1983-2018. Even without Delaware, however, the distribution is very unequal.

The second-largest cluster, California, contains 3.4% of the observations, which is 9% of the non-Delaware

data and 383 times as many as the smallest cluster, New Hampshire, which contains only 0.01% of the

observations. By contrast, classical papers on the performance of the CRVE had operated with equal cluster

sizes (Bertrand, Duflo, and Mullainathan 2004). Recent work showing failure of the CRVE with 50 clusters

of “wildly different cluster sizes” (MacKinnon and Webb 2017) used a cluster size distribution mimicking

the population distribution of U.S. states, which resembles the incorporation cluster size distribution without

Delaware.
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To understand the intuition behind the importance of cluster size imbalance, consider the formula for

the “sandwich” cluster-robust variance estimator (3) (CRVE). The summation over the outer product of the

error terms in each cluster ε̂sε̂
′
s estimates the within-cluster covariance matrix Ωs, in each case sandwiched

between the cluster-specific covariates Ws, (i.e., the sum is over the outer products of the cluster-specific

score vector Ws
′ε̂s). The attraction of the CRVE is that it makes no assumptions on the structure of Ωs, up

to the point of perfect correlation within cluster. The price to pay for this is that the number of independent

observations to average over in estimating the CRVE is the number of clusters (i.e., states), not the number

of individual observations (i.e., firm-years). Asymptotic results hold for S → ∞, not N → ∞ (Carter,

Schnepel, and Steigerwald 2017; Djogbenou, MacKinnon, and Nielsen 2019).9

The formula (3) also shows that the weight of individual clusters in calculating the CRVE tends to

increase as the square of cluster size because a typical element of W′
sε̂sε̂

′
sWs is a weighted sum over all

N2
s elements of ε̂sε̂

′
s. This implies that there tends to be less “averaging” and hence slower convergence

when cluster sizes are unequal. Nevertheless, the true rate of convergence also depends on the weights

(i.e, the independent variables) and on the degree of intra-cluster correlation, which interact in complicated

ways (cf. Djogbenou, MacKinnon, and Nielsen 2019, section 2.1, B. E. Hansen and S. Lee 2019, section

4). In particular, Carter, Schnepel, and Steigerwald 2017, result 1.a show that the variance for a particular

coefficient is estimated only by the between-cluster variation in the coefficient estimate. For a treatment

model with individual or cluster fixed effects, this means that the variance of the treatment coefficient is

estimated only from clusters in which the treatment coefficient is identified, i.e., clusters that experience a

change in treatment status. This explains why section 3 tended to find worse overrejection with fewer treated

clusters. At the same time, it is important to recall that adding more untreated clusters, or observations

in untreated clusters, will change the weights in the formula and is thus not irrelevant for the variance

estimation.

Carter, Schnepel, and Steigerwald 2017 introduce the feasible effective number of clusters as a guide to

the complicated behavior of the CRVE and resulting t-statistics. In the setting of section 3 with Tobin’s

q as dependent variable, the feasible effective number of clusters for testing the effects of one of the five

modern anti-takeover statutes of Karpoff and Wittry 2018 is between 1.3 and 3.2.10 This is not only much

lower than the nominal number of clusters, 51, but also much too small for conventional inference. To be

sure, the feasible effective number of clusters is based on a worst-case assumption of perfect within-cluster

correlation, and we show below that it is conservative. Nevertheless, it underscores that one should thus

expect the variance estimate 3 to be very poor and the resulting t-statistic 4 to be very erratic.

To isolate the importance of cluster size imbalance, we repeat our placebo law tests on simulated data

with different degrees of cluster imbalance: 2 (perfect balance), 22, 42, 62 (actual data), or 82% of the firms

are in the largest cluster/state (and the rest divided equally among the remaining 50 states). The simulated

data match the first and second moments of the real data, but abstract from other features of the real

data that might complicate inference, such as non-zero higher moments. As in the real data, we simulate

8,413 firms over 36 years but with perfect balance, i.e., every firm is in the data for all 36 years. We divide

the firms among 51 states, and treat 31 of them at independently and randomly chosen years (31 being

the average of the number of states having adopted one of the five KW anti-takeover statutes). We again

9Equivalently, asymptotic results can be stated in terms of N → ∞ but under a restriction on relative cluster sizes

that implicitly guarantees S → ∞, as in B. E. Hansen and S. Lee 2019.
10We calculate these numbers using a package by C. H. Lee and Steigerwald 2018.
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simulate separately data in which Delaware is “treated”, and data in which it is not. We model firm and

time fixed effects, and add an error term that is the sum of two AR(1) processes, one at the firm and another

at the state level; we do not include industry or other additional effects. Specifically, our data-generating

process (DGP) is

yist = αi + αt + ηist (5)

ηist = µit + µst

µit = ρ1µit−1 + εit

µst = ρ2µst−1 + εst

αi
iid∼ N

(
0, σ2

αi

)
, αt

iid∼ N
(
0, σ2

αt

)
εit

iid∼ N
(
0, σ2

1

)
, εst

iid∼ N
(
0, σ2

2

)
Note that the DGP does not contain a treatment effect.

We calibrate the DGP using 1983-2018 CRSP/Compustat data, from which we estimate:

Parameter Value

σαi 1.080

σαt 0.236

ρ1 0.488

ρ2 0.491

σ1 0.782

σ2 0.113

We then use the FE estimator to estimate yist = αi + αt + βDst + ηist, calculate the t-statistic (4) from

the CRVE (3), and compared it to critical values from the t-distribution with 50 degrees of freedom, as

before. This procedure is run 2,000 times per cluster imbalance and Delaware treatment status.

[Insert Figure 3 Here.]

Figure 3 shows the results. When clusters are balanced (Delaware = 2% of the sample), tests are not

too far from their nominal size. As cluster imbalance increases, however, overrejection becomes greater and

eventually severe as the sample becomes as unbalanced as in reality, where Delaware contains 62% of all

firm-years.

5 Solutions

This section examines possible solutions, i.e., methods for valid inference with state corporate laws. Focus is

on robustness checks commonly used in the empirical corporate finance literature, the wild cluster boostrap

(Cameron, Gelbach, and Miller 2008), and permutation tests on the treatment indicators. The common

robustness checks are dropping Delaware and/or examining lead/lag indicators of treatment; both perform
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poorly. The wild cluster bootstrap does fine by itself but completely fixes the problem only when Delaware

is dropped from the sample, as might be expected given results in MacKinnon and Webb 2017; Djogbenou,

MacKinnon, and Nielsen 2019). The permutation test presents the advantage of being exact against a sharp

null hypothesis (as in the Fisher exact test).

Before continuing our examination of these three solutions, we pause to mention a few other methods that

one might consider but that do not work in the present context. A simple fix could be to adjust the degrees

of freedom in the t-distribution used to obtain critical values. In particular, one could set the degrees-of-

freedom equal to the feasible effective number of clusters of Carter, Schnepel, and Steigerwald 2017, which,

as reported above, is between 1 and 3 in the present context. As Carter, Schnepel, and Steigerwald 2017 note

and Cameron and Miller 2015; MacKinnon and Webb 2017 find in other contexts, however, this method is

likely to be excessively conservative because it is based on a worst-case assumption, and this is exactly what

we found in unreported results: with this degree-of-freedom correction, the conventional test almost never

rejects. We have found the opposite problem with the degrees-of-freedom and variance bias corrections of

Young 2016: unreported results show equal or even more overrejection than in the conventional approach in

our setting.

Several other recently developed methods for cluster-robust inference are conceptually unsuitable for

the present setting, for example because they require an equal or large number of observations in each

cluster (e.g., Donald and Lang 2007; Bester, Conley, and C. B. Hansen 2011; Ibragimov and Müller 2016),

because the parameter of interest must be identified within each cluster (e.g., Canay, Romano, and Shaikh

201711), or because one must at least be able to collect a clearly defined post-treatment indicator from each

cluster (Hagemann 2019b; Hagemann 2019a (which is not the case in the difference-in-difference setting when

treatment years vary12).13

5.1 Typical Robustness Checks in Empirical Corporate Finance

We begin by considering the performance of typical robustness checks in the empirical corporate finance

literature: dropping Delaware from the sample, and/or examining a dynamic “event study” specification

with lead/lag treatment dummies. For each robustness check, We repeat the placebo law exercise from

section 3 to gauge performance.

11When treatment is assigned at the cluster level and hence not identified within cluster, Canay, Romano, and

Shaikh 2017 implement their method by considering pairs of treated and untreated clusters. In the current setting,

however, their postulate of pairs “suggested” by the treatment assignment is not met, such that this implementation

seems unappealing.
12As in Ibragimov and Müller 2016, fn. 10, one might overcome this problem by considering only years before

the first and after the last state adopted the statute in question. Given that at least some adoptions occur many

years after others, however, this would either entail very considerable data loss or require dropping very early or late

adopters or years. Of course, it might be preferable to restrict the estimates to a narrower window. This leads into

broader questions of research design that are beyond the scope of the present paper.
13A related technical difference between the first two approaches and those considered below is in the type of

asymptotics: the former consider asymptotics ns → ∞ for fixed S, whereas the latter, including the conventional

cluster-robust inference exposited above, consider S → ∞. To the extent S → ∞ asymptotics have been assumed

based on the nature of the setting rather than analytical convenience, an appropriate “fix” should retain that as-

sumption.
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5.1.1 Dynamic “Event Study” Test

For the dynamic specification, we estimate two specifications and combine the results. We first estimate the

baseline estimating equation (2.1) as before. If the conventional CRVE test rejects the null hypothesis at the

specified level, we then additionall estimate a modified specification where we replace the single treatment

dummy with a dummy for the treatment year, dummies for each of the two years before treatment, a dummy

for the first year after treatment, and a dummy for all subsequent years.14 Denoting that last period “2+”,

we thus estimate the following equation:

yij...st = αi +

2+∑
τ=−2

βτDst+τ + δ′xit + γ′zj...st + εij...st

We reject the null hypothesis if and only if:

1. The treatment dummy β is statistically significant at the specified level (i.e., 1, 5, or 10%) in the

baseline specification; and

2. The lead year dummies β−1, β−2 are jointly statistically insignificant at the specified level; and

3. The two post dummies β1, β2+ are jointly statistically significant at the specified level.

We also consider a variant where we test not simple joint significance but significance of the sum of the

dummies (in steps 2. and 3., respectively), which will tend to eliminate cases where the two dummies are of

opposite sign.

[Insert Figure 4 Here.]

Figure 4 shows the results, which are mixed. Even the joint test overrejects for smaller numbers of

treated clusters. As the number of treated clusters increases to about 25 or more, however, the joint test

achieves more or less nominal size. The test using the sums of the pre- and post-dummies, respectively, does

a little better than the simple joint significance test, especially when Delware is not treated (left column).

For 10% nominal test size (top row), the joint test even overrejects at larger numbers of treated clusters,

especially when Delaware is treated (right column). but it asymp, however, this is far from being the case.

There is an issue with the joint dynamic tests, however, of which the underrejection at size 10% is a

sign. If the joint tests were independent, then the combination of three tests (baseline, pre, post) should

have α3 � α size. For example, the 1% test should falsely reject the null only with probability 10−6. In

actuality, the pre and post tests are not independent from one another because errors are allowed to be serially

correlated, and neither is independent of the baseline test because the latter tests a linear combination of

the former. Nevertheless, one should expect the joint size to be less than the nominal size of the ingredient

tests, not equal to it. The coincidence of nominal and empirical size for larger numbers of treated clusters

is thus partly a coincidence. Moreover, the stringency of the triple-test is likely to reduce power, which we

indeed find below.

14This is the same as the specification used by Bertrand and Mullainathan 2003; Giroud and Mueller 2010 except

that we added a second lead dummy, Ds,−2.
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5.1.2 Dropping Delaware

A simpler alternative is to drop Delaware from the sample. This eliminates the worst part of the cluster size

imbalance. However, as mentioned above and shown in figure 2, even without Delaware, incorporation cluster

sizes are “wildly different” of a degree that has been found to generate severe overrejection in other settings

(MacKinnon and Webb 2017). Unsurprisingly, overrejection remains large here after dropping Delaware.

This is shown in the bottom left panel of figure 5.

[Insert Figure 5 Here.]

5.2 Cluster Wild Bootstrap

The top row of figure 5 shows results for the cluster wild bootstrap introduced by Cameron, Gelbach, and

Miller 2008. The wild bootstrap uses restricted estimates and Rademacher weights in the bootstrap data

generation process, since these generally perform better than alternatives in simulations of MacKinnon and

Webb 2017; Djogbenou, MacKinnon, and Nielsen 2019; the number of bootstrap replications is set to 999.

The wild bootstrap’s performance is much better than that of conventional CRVE inference analyzed in

section 3. Nevertheless, there is still overrejection for all but small numbers of treated clusters when Delware

is not treated (top left plot) or small numbers of treated clusters when Delware is treated (top right plot).

There is also slight overrejection when moderate or large numbers of clusters are treated, more so when

Delware is not treated.

These results are not surprising in as much as Djogbenou, MacKinnon, and Nielsen 2019, fig. 3 also

find overrejection of the cluster wild bootstrap when one cluster contains half of all observations (using a

continuous regressor). Recall that Delaware contains 62% of the observations. By contrast, MacKinnon and

Webb 2017 show that the cluster wild bootstrap works well with degrees of cluster imbalance resembling

incorporation cluster size imbalance without Delaware.

This suggests that the combination of the cluster wild bootstrap and dropping Delaware should lead

to valid inference. The bottom right plot of figure 5 shows that this is indeed the case. The exception is

very low numbers of treated clusters, a well-known special case presenting a separate problem (Imbens and

Kolesár 2016; MacKinnon and Webb 2020). The main drawback would appear to be that dropping Delaware

sacrifices 2/3 of the available data that could otherwise have been used to estimate the control variables with

more precision, with a resulting loss in power (to which we return below).

5.3 Permutation Test on the Treatment Dummy

Finally, we consider a permutation test on the treatment dummy (DiCiccio and Romano 2017; MacKinnon

and Webb 2020; Young 2020. The intuition of the test is a simple inversion of the placebo law logic of

the preceding sections. That logic was that a valid test should not find a “significant” result with random

placebo laws–a false positive–more frequently than the test’s nominal size. While the preceding sections used

this logic to criticize conventional tests, it can also be used constructively to formulate a valid test: the null

hypothesis should be rejected if and only if the actual test statistic (4) is in the relevant tail of the empirical

distribution of equivalent test statistics generated by placebo laws.15

15By contrast, Hagemann 2019b; Hagemann 2019a permutes cluster-year-specific intercept estimates, not placebo

laws (i.e., independent variables) themselves. As mentioned above, the difficulty with this approach is that when
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The main attraction of the permutation test is that it is exact in finite samples against the sharp null

hypothesis that the treatment dummy has no effect on the distribution of the errors (e.g., Lehmann and

Romano 2005, Theorem 15.2.2).16 The sharp null is stronger than the null of no average treatment effect.

In particular, it excludes the possibility that treated units have higher variance. Nevertheless, the sharp null

seems attractive for a minimum hurdle test in the sense that if even a sharp null cannot be rejected, then any

more specific claims inconsistent with the sharp null (e.g., of a particular treatment effect) should be viewed

with deep suspicion. In simpler, univariate contexts, researchers frequently adopt this position implicitly by

using the Fisher exact test, which is also valid (only) against a sharp null.

In addition, asymptotically, the permutation test on the treatment dummy can be conjectured to be

asymptotically valid against the less stringent null hypothesis of zero average treatment effect, provided the

test statistic is studentized. DiCiccio and Romano 2017, Theorem 3.3 prove this for permutation of a subset

of regressors in a simple cross-sectional regression, and Young 2020 proves it for clustered regression under

certain restrictive conditions. For this reason, and to eliminate mechanical uninteresting heteroskedasticity

from cluster sizes etc,̇ we use as the test-statistic the t-statistic 4 derived from the CRVE 3. MacKinnon

and Webb 2020 investigate the performance of such a permutation test on a continuous regressor using the

t-statistic (which they call the randomization-inference t-test, or RI-t), and find that it performs well in

simulations even when the largest cluster contains half of all observations.

We permute the treatment dummy while holding Delaware’s treatment status and the number of treated

states constant. The reason to do so is that these factors have a mechanical effect on the distribution of the

t-statistic, as shown by all the simulations thus far. Similarly, we hold and the years of treatment fixed in our

permutation tests, because those too will have mechanical impacts on the test statistics by shifting weights

(cf,̇ eġ,̇ Chaisemartin and D’Haultfœuille 2020). Mechanically, the permutation test will always have correct

size against the sharp null no matter what is being permuted. However, there is no reason to discard the

information that some treatment assignments will tend to generate larger test statistics even under the null,

i.e., irrespective of any treatment effects. Holding such ancillary statistics fixed will also increase power. See

Cox 1958; MacKinnon and Webb 2020 for related discussion.17

To investigate the finite sample performance of the permutation test, we can resort to more Monte Carlo

simulations. To gain insight about the behavior of the permutation test when the randomization hypothesis

does not hold, we generate cross-sectional data [Note to readers: this will eventually be extended to

panel data, but we have not been able to perform the extensive computations yet.] with zero

average treatment effect but treatment heteroskedasticity. A standard normal variable ξ constant within

state is added to the data generating process only for treated observations, such that the error variance is

about 10% higher and the intra-state correlation about double in treated relative to untreated states. 5,100

firms are divided between Delaware (2,550 firms) and 50 other states of 51 firms each. The data generating

treatment occurs in different years, it is not clear which cluster-year dummy to retain from each cluster.
16[Note to readers of this draft: DiCiccio and Romano 2017 formulate the permutation test for regression

coefficients under the assumption that the treatment is independent of all the covariates, not only the error term.

This seems unnecessarily strong but is something we are still looking into.]
17MacKinnon and Webb 2020, section 3.2 also argue for conditioning the permutation on cluster sizes. The difficulty

with doing so is that this conditioning will always be imperfect. Empirically, MacKinnon and Webb 2020 find that

this conditioning makes very little difference.
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process is now

yijs1 = µs1 + ηijs1 +Dξs1, µ, ξ
iid∼ N (0, 1) , η

iid∼ N (0, 9) , (6)

with µ, η, ξ,D, z mutually independent. We then estimate with OLS

yijs1 = α+ βD (7)

and calculate the t-statistic (4) using (3). Unlike before, however, the critical values for each test are

now taken not from the t-distribution but from the empirical distribution of t-statistics generated by re-

randomizing D across the 51 states (we use 1,000 re-randomizations per run of the simulation). Delaware is

never treated, but this is without loss of generality because with cross-sectional data, the cases of S1 treated

clusters including Delaware are equivalent to 51 − S1 treated clusters excluding Delaware, and vice versa.

We run the simulation 10,000 times per number of treated clusters.

[Insert Figure 6 Here.]

The top-right panel of figure 6 shows the results. For comparison, we also show results using the

conventional CRVE approach (bottom left), the wild cluster bootstrap (bottom right), and a permutation

test that does not preserve Delaware’s treatment status (top left). While our preferred permutation test is

not perfect (nor should it be, since the sharp null does not hold!), it does much better than the other tests.

[Note to readers: We have yet to reconcile the poor performance of the cluster wild bootstrap

in these simulated cross-sectional data with its good performance with the real panel data.]

6 Power

Finally, we consider power. To do so, we start with the CRSP/Compustat data described in section 3,

focusing on (winsorized) Tobin’s q. However, we augment the data by adding to the outcome variable,

Tobin’s q, for state-years randomly chosen to be treated. That is, we again generate random laws, but now

they are not placebos but actually do have an effect. We add 3, 5, or 10% of a standard deviation of Tobin’s

q, which is 1.47 (the mean of Tobin’s q in our data is 2.04). We do so 1,600 times for each number of treated

states and whether Delaware is treated, not treated, or dropped, and for each of the three effect sizes. We

then apply the respective test (permutation, wild bootstrap, or conventional CRVE), focusing on nominal

test size 5%.

[Insert Figure 7 Here.]

Figure 7 graphs the power. The rows correspond to effect sizes (from top to bottom: 3, 5, 10%), whereas

the columns correspond to Delaware’s treatment status (from left to right: not treated, treated, dropped).

The three lines within every plot correspond to the three different tests, as described in the legend.

Three results stand out. First, power is unacceptably low for 0.03 s.d. effect sizes and arguably also for

0.05 s.d. effect sizes, regardless of the test, i.e., even with the conventional CRVE test. When the true effect

size is 0.03 s.d., power barely reaches 50% when all states are treated, including Delaware, and is mostly

far below that. The rule of thumb of 80% power is never attained with 0.03 s.d. effect size, and attained

for 0.05 s.d. effect size only for 40 treated clusters or more using the conventional CRVE (which, of course,
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dramatically overrejects), or using the cluster wild bootstrap when all but Delaware are treated (where the

bootstrap overrejects, see 5).

Second, even for effect sizes of 0.10 s.d., reliable inference–i.e., the permutation test, or the bootstrap

when Delaware is dropped–attains 80% power only when Delaware is treated, or if at least 20 other states

are treated.

Third, when they are both reliable, there is not much separating the power of the wild cluster bootstrap

and the permutation test. In particular, there power is virtually identical when Delaware is dropped, which

is the only situation when the bootstrap is true to size.

Finally, we compare the power of the permutation test to the power of the (joint) “dynamic” robustness

check of lead/lag treatment dummies described in section 5.1.1. This is shown in figure 8, again for tests of

nominal size 5%. As hinted in section 5.1.1, the joint dynamic test is conservative. Its power is uniformly

less than that of the permutation test, except for low numbers of treated clusters where the joint dynamic

test overrejects.

[Insert Figure 8 Here.]

7 Conclusion

Using Monte Carlo simulations, this paper demonstrates severe problems with conventional inference when

using state corporate laws for identification of corporate governance effects in firm-level data, in particular

the popular difference-in-difference panel approach. The paper shows that even the cluster wild bootstrap

struggles to deal with the extreme imbalance in incorporation state cluster sizes. The paper proposes a

permutation test to address this problem along the lines of DiCiccio and Romano 2017; MacKinnon and Webb

2020. The permutation test is exact under the randomization hypothesis, and shows promising performance

superior to alternative tests in Monte Carlo simulations even when the randomization hypothesis does not

hold.

Whether or not the permutation test proposed here will ultimately be adopted, researchers need to do

something to address the severe inferential challenge posed by unequal cluster sizes. Importantly, while this

paper has focused on demonstrating the worst problem originating from Delaware’s dominant size, simply

omitting Delaware firms from the sample will not solve all issues. Even without Delaware, incorporation

cluster sizes are very unequal, and conventional inference still strongly overrejects; only when paired with

the wild cluster bootstrap does dropping Delaware solve the problem.

Beyond the specifics of the tests, this paper can also be read as another cautionary tale about trying

to find relatively small effects in noisy data using complex methods such as high-dimensional fixed effect

models (cf. Young 2019 on instrumental variables). The high number of firm-year observations may mislead

one into thinking that even small effects should be detectable. Once it is realized that the number of

clusters is the relevant degrees of freedom for inference, however, it becomes clear that power will often

be an issue. This is especially so because, as Carter, Schnepel, and Steigerwald 2017 have shown, the

rate of convergence of the variance estimator is governed by the effective number of clusters, which with

incorporation clusters is generally in the low single digits. The specifics will depend on the hypothesized

effect size, the noisiness of the dependent variable, the distribution of the treatment assignment, and the

ability to control for known predictors. Fortunately, modern computing power offers the ability to perform
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custom-made power calculations even for complex problems with relative ease. Researchers can and should

also check the performance of their statistical tests specifically under the conditions that they are studying

using methods such as those discussed in this paper.
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Figure 1. Rejection Rates for Placebo Laws (CRVE, Real Data)

Notes. This figure presents the empirical rejection rates of conventional tests in real CRSP/Compustat data 1983-
2018 using critical values from the t-distribution with 50 degrees of freedom and t-statistics calculated from the
“sandwich” variance estimator clustered by state of incorporation (CRVE). The dependent variable is Tobin’s q. The
outcome variable is winsorized at the 2.5% and 97.5% levels. Rejection rates are calculated from 2,000 randomly
generated placebo laws for each number of “treated” states, each DE “treatment” status, and whether KW controls
are included or not in the specification.
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Figure 2. Cluster Sizes for States of Incorporation

Notes. This figure presents the distribution of incorporation cluster sizes, i.e., how many firm-years in CRSP/Compustat data 1983-2018 belong to each of the 50
states and the District of Columbia. States are ordered by cluster size.
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Figure 3. Cluster Imbalance and Overrejection (CRVE, Simulated Data)

Notes. This figure presents the relation between the degree of cluster imbalance and the degree of overrejection of conventional inference with the CRVE. The
empirical rejection rates are calculated from 2,000 simulated panels by conventional tests using critical values from the t-distribution with 50 degrees of freedom
and t-statistics calculated from the “sandwich” variance estimator clustered by state of incorporation (CRVE). Degree of cluster imbalance is governed by the
share of firms incorporated in DE.
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Figure 4. Rejection Rates for Placebo Laws
(Joint Tests With Dynamic Specification)

Notes. This figure presents the empirical rejection rates for the joint test of baseline specification and dynamic
specification. The dependent variable is Tobin’s q. The outcome variable is winsorized at the 2.5% and 97.5% levels.
KW controls are included in the specification. Rejection rates are calculated from 2,000 randomly generated placebo
laws for each number of “treated” states and each DE “treatment” status.
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Figure 5. Rejection Rates for Placebo Laws (Wild Bootstrap and Drop DE)

Notes. This figure presents the empirical rejection rates of cluster Wild Bootstrap (by state of incorporation) and
empirical rejection rates of CRVE on the DE-dropped sample. The dependent variable is Tobin’s q. The outcome
variable is winsorized at the 2.5% and 97.5% levels. KW controls are included in the specification. Rejection rates are
calculated from 2,000 randomly generated placebo laws for each number of “treated” states and each DE “treatment”
status.
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Figure 6. Rejection Rates for Heteroskedasticity
(Permutation Tests and Alternative Tests)

Notes. This figure presents the empirical rejection rates of permutation test, CRVE, and cluster Wild Bootstrap (by
state of incorporation) on simulated cross-sectional data. Rejection rates are calculated from 10,000 simulated data
each method and each number of treated states.
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Figure 7. Power: Permutation Test, Wild Bootstrap, and CRVE

Notes. This figure presents the empirical power for the permutation test, Wild Bootstrap, and CRVE. The dependent variable is Tobin’s q plus an additional
3/5/10% effect induced by placebo laws. The outcome variable is winsorized at the 2.5% and 97.5% levels. KW controls are included in the specification. The
nominal test size is 5%. Powers are calculated from 1,600 randomly generated laws for each number of “treated” states, each DE “treatment” status, and each
effect size.
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Figure 8. Power: Joint Tests With Dynamic Specification

Notes. This figure presents the empirical power for the the joint test of baseline specification and dynamic specifica-
tion. The dependent variable is Tobin’s q plus an additional 3/5/10% effect induced by placebo laws. The outcome
variable is winsorized at the 2.5% and 97.5% levels. KW controls are included in the specification. The nominal test
size is 5%. Powers are calculated from 1,600 randomly generated laws for each number of “treated” states, each DE
“treatment” status, and each effect size.
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Table 1. Average Rejection Rates for Placebo Laws (Other Outcomes)

10% Nominal Size 5% Nominal Size 1% Nominal Size
Dep. Var DE Treated DE Not Treated DE Treated DE Not Treated DE Treated DE Not Treated

ROA 0.47 0.38 0.38 0.27 0.23 0.13
(0.11) (0.10) (0.12) (0.09) (0.13) (0.06)

Leverage 0.23 0.22 0.14 0.15 0.04 0.07
(0.07) (0.09) (0.05) (0.09) (0.01) (0.08)

Capex 0.25 0.20 0.16 0.13 0.06 0.05
(0.07) (0.09) (0.06) (0.09) (0.04) (0.08)

PPE Growth 0.24 0.16 0.16 0.10 0.07 0.04
(0.02) (0.09) (0.02) (0.09) (0.01) (0.07)

Asset Growth 0.17 0.19 0.10 0.13 0.03 0.06
(0.01) (0.11) (0.01) (0.10) (0.01) (0.09)

Cash 0.21 0.21 0.13 0.15 0.05 0.07
(0.02) (0.09) (0.01) (0.09) (0.01) (0.07)

SGA Expense 0.06 0.15 0.03 0.10 0.004 0.04
(0.02) (0.10) (0.01) (0.10) (0.002) (0.08)

Notes. This table shows the average empirical rejection rates of conventional tests (CRVE) across different numbers of “treated” states (from 1 to 51),
using critical values from the t-distribution with 50 degrees of freedom and t-statistics calculated from the “sandwich” variance estimator clustered by
state of incorporation. Standard deviations of rejection rates are displayed in parentheses. The outcome variables include ROA, leverage, Capex, PPE
growth, asset growth, cash, and SGA expense. ROA equals EBITDA divided by total assets; Capex, PPE, cash, and SGA expenses are scaled by total
assets; PPE and asset growth are the percentage change in PPE and total assets, respectively; and leverage equals debt divided by total assets. All
outcome variables are winsorized at the 2.5% and 97.5% levels. KW controls are included in the specification. Rejection rates are calculated from 2,000
randomly generated placebo laws for each number of “treated” states and each DE “treatment” status.
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